Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 14: 1330419, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38450186

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a heterogeneous cancer, with minimal response to therapeutic intervention and with 85% of cases diagnosed at an advanced stage due to lack of early symptoms, highlighting the importance of understanding PDAC immunology in greater detail. Here, we applied an immunoproteomic approach to investigate autoantibody responses against cancer-testis and tumor-associated antigens in PDAC using a high-throughput multiplexed protein microarray platform, comparing humoral immune responses in serum and at the site of disease in order to shed new light on immune responses in the tumor microenvironment. We simultaneously quantified serum or tissue IgG and IgA antibody isotypes and subclasses in a cohort of PDAC, disease control and healthy patients, observing inter alia that subclass utilization in tumor tissue samples was predominantly immune suppressive IgG4 and inflammatory IgA2, contrasting with predominant IgG3 and IgA1 subclass utilization in matched sera and implying local autoantibody production at the site of disease in an immune-tolerant environment. By comparison, serum autoantibody subclass profiling for the disease controls identified IgG4, IgG1, and IgA1 as the abundant subclasses. Combinatorial analysis of serum autoantibody responses identified panels of candidate biomarkers. The top IgG panel included ACVR2B, GAGE1, LEMD1, MAGEB1 and PAGE1 (sensitivity, specificity and AUC values of 0.933, 0.767 and 0.906). Conversely, the top IgA panel included AURKA, GAGE1, MAGEA10, PLEKHA5 and XAGE3aV1 (sensitivity, specificity, and AUC values of 1.000, 0.800, and 0.954). Assessment of antigen-specific serum autoantibody glycoforms revealed abundant sialylation on IgA in PDAC, consistent with an immune suppressive IgA response to disease.

2.
PLoS Comput Biol ; 19(6): e1011163, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37327214

RESUMEN

BACKGROUND: Microbiome research is providing important new insights into the metabolic interactions of complex microbial ecosystems involved in fields as diverse as the pathogenesis of human diseases, agriculture and climate change. Poor correlations typically observed between RNA and protein expression datasets make it hard to accurately infer microbial protein synthesis from metagenomic data. Additionally, mass spectrometry-based metaproteomic analyses typically rely on focused search sequence databases based on prior knowledge for protein identification that may not represent all the proteins present in a set of samples. Metagenomic 16S rRNA sequencing only targets the bacterial component, while whole genome sequencing is at best an indirect measure of expressed proteomes. Here we describe a novel approach, MetaNovo, that combines existing open-source software tools to perform scalable de novo sequence tag matching with a novel algorithm for probabilistic optimization of the entire UniProt knowledgebase to create tailored sequence databases for target-decoy searches directly at the proteome level, enabling metaproteomic analyses without prior expectation of sample composition or metagenomic data generation and compatible with standard downstream analysis pipelines. RESULTS: We compared MetaNovo to published results from the MetaPro-IQ pipeline on 8 human mucosal-luminal interface samples, with comparable numbers of peptide and protein identifications, many shared peptide sequences and a similar bacterial taxonomic distribution compared to that found using a matched metagenome sequence database-but simultaneously identified many more non-bacterial peptides than the previous approaches. MetaNovo was also benchmarked on samples of known microbial composition against matched metagenomic and whole genomic sequence database workflows, yielding many more MS/MS identifications for the expected taxa, with improved taxonomic representation, while also highlighting previously described genome sequencing quality concerns for one of the organisms, and identifying an experimental sample contaminant without prior expectation. CONCLUSIONS: By estimating taxonomic and peptide level information directly on microbiome samples from tandem mass spectrometry data, MetaNovo enables the simultaneous identification of peptides from all domains of life in metaproteome samples, bypassing the need for curated sequence databases to search. We show that the MetaNovo approach to mass spectrometry metaproteomics is more accurate than current gold standard approaches of tailored or matched genomic sequence database searches, can identify sample contaminants without prior expectation and yields insights into previously unidentified metaproteomic signals, building on the potential for complex mass spectrometry metaproteomic data to speak for itself.


Asunto(s)
Microbiota , Espectrometría de Masas en Tándem , Humanos , ARN Ribosómico 16S/genética , Bases de Datos de Proteínas , Péptidos/genética , Péptidos/análisis , Microbiota/genética , Bacterias/genética , Proteoma/genética
3.
Viruses ; 15(2)2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36851798

RESUMEN

The COVID-19 pandemic continues to affect individuals across the globe, with some individuals experiencing more severe disease than others. The relatively high frequency of re-infections and breakthrough infections observed with SARS-CoV-2 highlights the importance of extending our understanding of immunity to COVID-19. Here, we aim to shed light on the importance of antibody titres and epitope utilization in protection from re-infection. Health care workers are highly exposed to SARS-CoV-2 and are therefore also more likely to become re-infected. We utilized quantitative, multi-antigen, multi-epitope SARS-CoV-2 protein microarrays to measure IgG and IgA titres against various domains of the nucleocapsid and spike proteins. Potential re-infections in a large, diverse health care worker cohort (N = 300) during the second wave of the pandemic were identified by assessing the IgG anti-N titres before and after the second wave. We assessed epitope coverage and antibody titres between the 'single infection' and 're-infection' groups. Clear differences were observed in the breadth of the anti-N response before the second wave, with the epitope coverage for both IgG (p = 0.019) and IgA (p = 0.015) being significantly increased in those who did not become re-infected compared to those who did. Additionally, the IgG anti-N (p = 0.004) and anti-S titres (p = 0.018) were significantly higher in those not re-infected. These results highlight the importance of the breadth of elicited antibody epitope coverage following natural infection in protection from re-infection and disease in the COVID-19 pandemic.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Epítopos , Inmunoglobulina G , Pandemias , Nucleocápside , Reinfección , Inmunoglobulina A
4.
Viruses ; 13(5)2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33925055

RESUMEN

The COVID-19 pandemic has affected all individuals across the globe in some way. Despite large numbers of reported seroprevalence studies, there remains a limited understanding of how the magnitude and epitope utilization of the humoral immune response to SARS-CoV-2 viral anti-gens varies within populations following natural infection. Here, we designed a quantitative, multi-epitope protein microarray comprising various nucleocapsid protein structural motifs, including two structural domains and three intrinsically disordered regions. Quantitative data from the microarray provided complete differentiation between cases and pre-pandemic controls (100% sensitivity and specificity) in a case-control cohort (n = 100). We then assessed the influence of disease severity, age, and ethnicity on the strength and breadth of the humoral response in a multi-ethnic cohort (n = 138). As expected, patients with severe disease showed significantly higher antibody titers and interestingly also had significantly broader epitope coverage. A significant increase in antibody titer and epitope coverage was observed with increasing age, in both mild and severe disease, which is promising for vaccine efficacy in older individuals. Additionally, we observed significant differences in the breadth and strength of the humoral immune response in relation to ethnicity, which may reflect differences in genetic and lifestyle factors. Furthermore, our data enabled localization of the immuno-dominant epitope to the C-terminal structural domain of the viral nucleocapsid protein in two independent cohorts. Overall, we have designed, validated, and tested an advanced serological assay that enables accurate quantitation of the humoral response post natural infection and that has revealed unexpected differences in the magnitude and epitope utilization within a population.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Adolescente , Adulto , Antígenos Virales/inmunología , COVID-19/epidemiología , COVID-19/virología , Prueba Serológica para COVID-19 , Estudios de Casos y Controles , Estudios de Cohortes , Epítopos , Etnicidad , Femenino , Humanos , Inmunidad Humoral , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/inmunología , Pandemias , SARS-CoV-2/genética , Sensibilidad y Especificidad , Estudios Seroepidemiológicos , Índice de Severidad de la Enfermedad , Adulto Joven
5.
Analyst ; 146(4): 1207-1215, 2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33367346

RESUMEN

Tuberculosis (TB) is one of the top ten causes of death globally, despite being treatable. The eradication of TB disease requires, amongst others, diagnostic tests with high specificity and sensitivity that will work at the point of care (POC) in low-resource settings. The TB surface glycolipid antigen, mannose-capped lipoarabinomannan (ManLAM) currently serves as the only POC molecular diagnostic biomarker suitable for use in low cost immunoassays. Here, we demonstrate the high affinity and exceptional specificity of microvirin-N (MVN), a 14.3 kDa cyanobacterial lectin, toward H37Rv TB ManLAM and utilize it to develop a novel on-bead ELISA. MVN binds to ManLAM with sub-picomolar binding affinity, but does not bind to other variants of LAM expressed by non-pathogenic mycobacteria - a level of binding specificity and affinity that current commercially available anti-LAM antibodies cannot achieve. An on-bead ELISA was subsequently developed using MVN-functionalized magnetic beads which allows for the specific capture of ManLAM from human urine with a limit of detection (LOD) of 1.14 ng mL-1 and no cross-reactivity when tested with PILAM, a variant of LAM found on non-pathogenic mycobacteria.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Pruebas Diagnósticas de Rutina , Humanos , Lectinas , Lipopolisacáridos , Sensibilidad y Especificidad , Tuberculosis/diagnóstico
6.
J Proteomics ; 228: 103929, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32800795

RESUMEN

Most bacterial proteomic studies done to date utilise bacterial cells harvested from liquid culture media. However, it is widely accepted that many important determinants associated with virulence and host cell adhesion are exclusively expressed during growth on solid media, as a crude mimic of true biofilms. Here, we compare the observed proteome of Escherichia coli K12 from isolated single colonies on solid media with those observed at different growth phases in liquid culture; i.e. early-log, mid-log, early-, mid- and late-stationary growth phases. A total of 2044 protein groups covering approximately 47% of the total proteome were identified across all studied conditions, including 1650 proteins identified from single colonies and 1679 proteins from liquid cultured cells. Label-free quantitative analysis revealed that the E. coli proteome of single colonies on a solid agar differs from that observed in liquid culture. Notably, the presence of proteins in the Suf-operon that are involved in iron mobilisation and swarming motility was associated exclusively with single colony profiles, whereas proteins involved in motility such as motA, motB, fliH, flip, fliD and fliJ were associated exclusively with cells grown in liquid culture. The data presented here provide a valuable resource for understanding the role of key proteins within microenvironments surrounding E. coli single colonies. SIGNIFICANCE: To date, most proteomics studies have used E. coli cells harvested from liquid culture media even though many important determinants associated with virulence and host cell adhesion are exclusively expressed during growth on solid media. In this study, we compare the observed proteome of E. coli K12 from isolated single colonies on solid media with those observed at different growth phases in liquid culture; i.e. early-log, mid-log, early-, mid- and late-stationary growth phases. By using label-free quantitative analysis we demonstrate that the E. coli proteome of single colonies on a solid agar differs from that observed in liquid culture with an overlap of 68% of proteins between the two culture conditions. Our analysis further reveal the presence of proteins in the Suf-operon that are involved in iron mobilisation and swarming motility was associated exclusively with single colony profiles. While those proteins involved in motility such as motA, motB, fliH, flip, fliD and fliJ were associated exclusively with cells grown in liquid culture. By comparison to E. coli proteomic data available on liquid culture and solid media, this research represents a first effort to describe the differential expression of key E. coli proteins within microenvironments surrounding single colonies.


Asunto(s)
Escherichia coli K12 , Proteínas de Escherichia coli , Medios de Cultivo , Escherichia coli , Proteoma , Proteómica
7.
J Proteomics ; 191: 166-179, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29466714

RESUMEN

Understanding the cell wall of mycobacteria is crucial for improving drug design or identifying new antigens suitable to vaccination. Yet this remains problematic due to the complexity of the cell wall composition. In this study, we successfully developed gel-free approaches to study cell wall proteins in Mycobacterium smegmatis. The cell wall was subjected to differential centrifugation, differential detergent solubilisation and phase separation to yield the genuine cell wall proteome. Next, protein extracts were digested by filter-assisted sample preparation for LC-MS/MS analysis on a Q Exactive mass spectrometer, and identified proteins filtered through a stringent bioinformatics pipeline. This yielded the unprecedented coverage of 96 lipoproteins, 475 membrane proteins and 73 secreted proteins. Employing this approach, we next quantified changes in the cell wall proteome during exposure of M. smegmatis to sub-lethal concentration of rifampicin. This facilitated detailed characterisation of the dysregulation of ABC transporters, virulence factors such as Mce proteins and PknG, and proteins involved in cell wall and lipid synthesis. Crucially, these cell wall proteins are under-represented in previous proteome analysis of M. smegmatis. This approach enables further quantitative proteomic studies of the role of the cell wall proteome of mycobacteria in virulence or during drug exposure. SIGNIFICANCE: We developed novel gel-free sample preparation workflows for the cell wall fraction of mycobacteria that significantly increase the coverage of the cell wall proteome compared to previous studies. We then provide a data analysis workflow that enables the removal of likely cytosolic contaminants in the cell wall fraction post-measurement. Combined, these approaches increase the coverage of the cell wall proteome while ensuring that the identified proteins are true cell wall proteins and not carry-over of high-abundance contaminants from the cytosol. We have applied these approaches to quantify the dysregulation of cell wall proteins during exposure of M. smegmatis to rifampicin, which has shed new light on the coordinated down-regulation of ABC transporters as well as virulence factors present in the cell wall proteome.


Asunto(s)
Pared Celular/química , Mycobacterium smegmatis/efectos de los fármacos , Proteoma/metabolismo , Rifampin/farmacología , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/análisis , Proteínas Bacterianas/efectos de los fármacos , Pared Celular/efectos de los fármacos , Proteoma/efectos de los fármacos , Proteómica/métodos , Factores de Virulencia/metabolismo
8.
Mol Cell Proteomics ; 17(7): 1365-1377, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29549130

RESUMEN

Mycobacterial Ser/Thr kinases play a critical role in bacterial physiology and pathogenesis. Linking kinases to the substrates they phosphorylate in vivo, thereby elucidating their exact functions, is still a challenge. The aim of this work was to associate protein phosphorylation in mycobacteria with important subsequent macro cellular events by identifying the physiological substrates of PknG in Mycobacterium bovis BCG. The study compared the phosphoproteome dynamics during the batch growth of M. bovis BCG versus the respective PknG knock-out mutant (ΔPknG-BCG) strains. We employed TiO2 phosphopeptide enrichment techniques combined with label-free quantitative phosphoproteomics workflow on LC-MS/MS. The comprehensive analysis of label-free data identified 603 phosphopeptides on 307 phosphoproteins with high confidence. Fifty-five phosphopeptides were differentially phosphorylated, of these, 23 phosphopeptides were phosphorylated in M. bovis BCG wild-type only and not in the mutant. These were further validated through targeted mass spectrometry assays (PRMs). Kinase-peptide docking studies based on a published crystal structure of PknG in complex with GarA revealed that the majority of identified phosphosites presented docking scores close to that seen in previously described PknG substrates, GarA, and ribosomal protein L13. Six out of the 22 phosphoproteins had higher docking scores than GarA, consistent with the proteins identified here being true PknG substrates. Based on protein functional analysis of the PknG substrates identified, this study confirms that PknG plays an important regulatory role in mycobacterial metabolism, through phosphorylation of ATP binding proteins and enzymes in the TCA cycle. This work also reinforces PknG's regulation of protein translation and folding machinery.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Mycobacterium bovis/metabolismo , Fosfoproteínas/metabolismo , Proteómica/métodos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Mycobacterium bovis/crecimiento & desarrollo , Fosfopéptidos/química , Fosfopéptidos/metabolismo , Fosforilación , Reproducibilidad de los Resultados , Coloración y Etiquetado , Especificidad por Sustrato
9.
J Proteomics ; 180: 25-35, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28887208

RESUMEN

Shiga-toxin-producing Escherichia coli (STEC) and enteropathogenic Escherichia coli (EPEC) are key diarrhoea-causing foodborne pathogens. We used proteomics to characterize the virulence and antimicrobial resistance protein profiles of three clinical pathogenic E. coli isolates (two EPEC [one resistant to ciprofloxacin] and one STEC) cultured on CHROMagar™STEC solid media after minimal laboratory passage. We identified 4767 unique peptides from 1630 protein group across all three clinical E. coli strains. Label-free proteomic analysis allowed the identification of virulence and drug resistance proteins that were unique to each of the clinical isolates compared in this study. The B subunit of Shiga toxin, ToxB, was uniquely detected in the STEC strain while several other virulence factors including SheA, OmpF, OmpC and OmpX were significantly more abundant in the STEC strain. The ciprofloxacin resistant EPEC isolate possessed reduced levels of key virulence proteins compared to the ciprofloxacin susceptible EPEC and STEC strains. Parallel reaction monitoring assays validated the presence of biologically relevant proteins across biologically-replicated cultures. Propagation of clinical isolates on a relevant solid medium followed by mass spectrometry analysis represents a convenient means to quantify virulence factors and drug resistance determinants that might otherwise be lost through extensive in vitro passage in enteropathogenic bacteria. SIGNIFICANCE: Through the use of quantitative proteomics, we have characterized the virulence and antimicrobial resistance attributes of three clinically isolated, pathogenic E. coli strains cultured on solid media. Our results provide new, quantitative data on the expressed proteomes of these tellurite-resistant, diarrhoeagenic E. coli strains and reveal a subset of antimicrobial resistance and virulence proteins that are differentially abundant between these clinical strains. Our quantitative proteomics-based approach should thus have applicability in microbiological diagnostic labs for the identification of pathogenic/drug resistant E. coli in the future.


Asunto(s)
Farmacorresistencia Bacteriana , Escherichia coli Enteropatógena , Proteínas de Escherichia coli/metabolismo , Proteómica , Escherichia coli Shiga-Toxigénica , Factores de Virulencia/metabolismo , Escherichia coli Enteropatógena/crecimiento & desarrollo , Escherichia coli Enteropatógena/aislamiento & purificación , Escherichia coli Shiga-Toxigénica/crecimiento & desarrollo , Escherichia coli Shiga-Toxigénica/aislamiento & purificación
10.
J Proteomics ; 180: 1-10, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29038038

RESUMEN

Vitamin C has been found to affect mycobacteria in multiple ways, including increasing susceptibility to antimicrobial drugs, inducing dormancy, and having a bactericidal effect. However, the regulatory events mediating vitamin C related adaptations remain largely elusive. Ser/Thr/Tyr protein phosphorylation plays an important regulatory role in mycobacteria, contributing to environmental adaptation, including dormancy and drug resistance. This study utilised the model organism, Mycobacterium smegmatis, and TiO2 phosphopeptide enrichment combined with mass spectrometry-based proteomics methods to elucidate the mycobacterial signalling and regulatory response to sub-lethal concentrations of vitamin C. After initial validation of peptide spectra, 224 non-redundant phosphosites in 154 proteins were retained with high confidence. Data analysis revealed that 30 peptides were differentially phosphorylated with Vitamin C treatment, including novel phosphosites found on both PknG and GarA. Of these significant proteins, we validated 11 by parallel reaction monitoring of high-confidence phosphopeptides. Interestingly, 17/30 phosphopeptides were annotated as part of transmembrane proteins, suggesting that it is likely vitamin C triggers typical signal transduction events in which the protein periplasmic domain perceives environmental signals and the cytoplasmic domain is then phosphorylated. Finally, the diverse nature of phosphorylated proteins involved in signalling, transport, and carbohydrate biosynthesis indicates the extent of such regulatory phosphorylation events. BIOLOGICAL SIGNIFICANCE: Our findings provide new mechanistic insight into a coordinated network of signalling and regulatory responses to sub-lethal vitamin C in Mycobacterium smegmatis and provide evidence that vitamin C is able to act as a novel extracellular signalling molecule. Vitamin C treatment caused changes in both the proteome and phosphoproteome associated with response to oxidative stress, a shift in metabolic regulation and progression toward dormancy, as well as phospho-dependent activation of specific secretory pathways and activation of specific two component and Ser/Thr/Tyr protein kinase activities. This study confirms the potential of vitamin C as convenient means to study aspects of mycobacterial dormancy, including those regulated at post-translational level.


Asunto(s)
Ácido Ascórbico/farmacología , Proteínas Bacterianas/biosíntesis , Mycobacterium smegmatis/metabolismo , Fosfoproteínas/biosíntesis , Proteoma/biosíntesis , Proteómica
11.
MethodsX ; 5: 475-484, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30622917

RESUMEN

The comprehensive characterisation of the cell wall proteome of mycobacteria is of considerable relevance to both the discovery of new drug targets as well as to the design of new vaccines against Mycobacterium tuberculosis. However, due to its extremely hydrophobic nature, the coverage of proteomic studies of this subcellular compartment is still far from complete. Here, we report novel gel-free cell wall sample preparation procedures and quantitative LC-MS/MS measurements on a Q Exactive mass spectrometer. We combine these with a novel post-measurement bioinformatic analysis to filter out likely cytosolic contaminants. This reveals a subset of proteins that are highly enriched for cell wall proteins. The success of this approach is verified by peptide-centric measurement of the abundance of known subcellular markers, as well as analysis of the percentage of predicted membrane proteins within the purified fraction. While M. smegmatis was used during this study to establish and optimise the sample preparation procedures, these can easily be applied to other mycobacterial species, such as M. bovis BCG or M. tuberculosis. •Improved gel-free cell wall sample preparation gives higher yields of tryptic peptides for LC-MS/MS measurement.•Higher yields of tryptic peptides provide better quantitation and coverage of cell wall proteome.•Post-measurement enrichment analysis filters out high abundance cytosolic contaminants that have carried through the experimental analysis.

12.
Sci Rep ; 7: 43858, 2017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28262820

RESUMEN

In the last 40 years only one new antitubercular drug has been approved, whilst resistance to current drugs, including rifampicin, is spreading. Here, we used the model organism Mycobacterium smegmatis to study mechanisms of phenotypic mycobacterial resistance, employing quantitative mass spectrometry-based proteomics to investigate the temporal effects of sub-lethal concentrations of rifampicin on the mycobacterial proteome at time-points corresponding to early response, onset of bacteriostasis and early recovery. Across 18 samples, a total of 3,218 proteins were identified from 31,846 distinct peptides averaging 16,250 identified peptides per sample. We found evidence that two component signal transduction systems (e.g. MprA/MprB) play a major role during initial mycobacterial adaptive responses to sub-lethal rifampicin and that, after dampening an initial SOS response, the bacteria supress the DevR (DosR) regulon and also upregulate their transcriptional and translational machineries. Furthermore, we found a co-ordinated dysregulation in haeme and mycobactin synthesis. Finally, gradual upregulation of the M. smegmatis-specific rifampin ADP-ribosyl transferase was observed which, together with upregulation of transcriptional and translational machinery, likely explains recovery of normal growth. Overall, our data indicates that in mycobacteria, sub-lethal rifampicin triggers a concerted phenotypic response that contrasts significantly with that observed at higher antimicrobial doses.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mycobacterium smegmatis/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Rifampin/farmacología , Antibióticos Antituberculosos/farmacología , Relación Dosis-Respuesta a Droga , Farmacorresistencia Bacteriana/genética , Mycobacterium smegmatis/genética , Péptidos/metabolismo , Fenotipo , Factores de Tiempo
13.
Front Microbiol ; 7: 427, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27092112

RESUMEN

Biochemical evidence is vital for accurate genome annotation. The integration of experimental data collected at the proteome level using high resolution mass spectrometry allows for improvements in genome annotation by providing evidence for novel gene models, while validating or modifying others. Here, we report the results of a proteogenomic analysis of a reference strain of Mycobacterium smegmatis (mc(2)155), a fast growing model organism for the pathogenic Mycobacterium tuberculosis-the causative agent for Tuberculosis. By integrating high throughput LC/MS/MS proteomic data with genomic six frame translation and ab initio gene prediction databases, a total of 2887 ORFs were identified, including 2810 ORFs annotated to a Reference protein, and 63 ORFs not previously annotated to a Reference protein. Further, the translational start site (TSS) was validated for 558 Reference proteome gene models, while upstream translational evidence was identified for 81. In addition, N-terminus derived peptide identifications allowed for downstream TSS modification of a further 24 gene models. We validated the existence of six previously described interrupted coding sequences at the peptide level, and provide evidence for four novel frameshift positions. Analysis of peptide posterior error probability (PEP) scores indicates high-confidence novel peptide identifications and shows that the genome of M. smegmatis mc(2)155 is not yet fully annotated. Data are available via ProteomeXchange with identifier PXD003500.

14.
Front Microbiol ; 6: 237, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25904896

RESUMEN

Ser/Thr/Tyr protein phosphorylation plays a critical role in regulating mycobacterial growth and development. Understanding the mechanistic link between protein phosphorylation signaling network and mycobacterial growth rate requires a global view of the phosphorylation events taking place at a given time under defined conditions. In the present study we employed a phosphopeptide enrichment and high throughput mass spectrometry-based strategy to investigate and qualitatively compare the phosphoproteome of two mycobacterial model organisms: the fast growing Mycobacterium smegmatis and the slow growing Mycobacterium bovis BCG. Cells were harvested during exponential phase and our analysis detected a total of 185 phospho-sites in M. smegmatis, of which 106 were confidently localized [localization probability (LP) = 0.75; PEP = 0.01]. By contrast, in M. bovis BCG the phosphoproteome comprised 442 phospho-sites, of which 289 were confidently localized. The percentage distribution of Ser/Thr/Tyr phosphorylation was 39.47, 57.02, and 3.51% for M. smegmatis and 35, 61.6, and 3.1% for M. bovis BCG. Moreover, our study identified a number of conserved Ser/Thr phosphorylated sites and conserved Tyr phosphorylated sites across different mycobacterial species. Overall a qualitative comparison of the fast and slow growing mycobacteria suggests that the phosphoproteome of M. smegmatis is a simpler version of that of M. bovis BCG. In particular, M. bovis BCG exponential cells exhibited a much more complex and sophisticated protein phosphorylation network regulating important cellular cycle events such as cell wall biosynthesis, elongation, cell division including immediately response to stress. The differences in the two phosphoproteomes are discussed in light of different mycobacterial growth rates.

15.
J Proteome Res ; 14(3): 1637-42, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25619111

RESUMEN

Filter-aided sample preparation is a proteomic technique for the preparation and on column proteolysis of proteins. Recently an enhanced FASP protocol was developed that uses deoxycholic acid (DCA) and that reportedly enhances trypsin proteolysis, resulting in increases cytosolic and membrane protein representation. FASP and eFASP were re-evaluated by ultra-high-performance liquid chromatography coupled to a quadrupole mass filter Orbitrap analyzer (Q Exactive). Although there was no difference in trypsin activity, 14,099 and 13,414 peptides, describing 1723 and 1793 protein groups, from Escherichia coli K12 were identified using FASP and eFASP, respectively. Characterization of the physicochemical properties of identified peptides showed no significant differences other than eFASP extracting slightly more basic peptides. At the protein level, both methods extracted essentially the same number of hydrophobic transmembrane helix-containing proteins as well as proteins associated with the cytoplasm or the cytoplasmic and outer membranes. By employing state-of-the-art LC-MS/MS shot gun proteomics, our results indicate that FASP and eFASP showed no significant differences at the protein level. However, because of the slight differences in selectivity at the physicochemical level of peptides, these methods can be seen to be somewhat complementary for analyses of complex peptide mixtures.


Asunto(s)
Cromatografía Liquida/métodos , Proteínas/química , Espectrometría de Masas en Tándem/métodos , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...